
UNCLASSIFIED

 UNCLASSIFIED 1

September 2021

Version 2.1

This document automatically expires 1-year from publication date unless revised.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DoD Enterprise
DevSecOps Reference
Design:
CNCF Kubernetes

Unclassified

Unclassified

UNCLASSIFIED

 UNCLASSIFIED i

Document Set Reference

UNCLASSIFIED

 UNCLASSIFIED ii

Document Approvals

Approved by:

__

Nicolas Chaillan

Chief Software Officer, Department of Defense, United States Air Force, SAF/AQ

UNCLASSIFIED

 UNCLASSIFIED iii

Trademark Information
Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our readers, and do not
constitute or imply endorsement by the Department of any non-Federal entity, event, product,
service, or enterprise.

UNCLASSIFIED

 UNCLASSIFIED iv

Contents
1 Introduction .. 1

1.1 Background .. 1

1.2 Purpose ... 1

1.3 DevSecOps Compatibility .. 2

1.4 Scope .. 2

1.5 Document Overview .. 3

1.6 What’s New in Version 2 .. 3

2 Assumptions and Principles .. 4

3 Software Factory Interconnects .. 4

3.1 Cloud Native Access Points ... 6

3.2 CNCF Certified Kubernetes ... 6

3.3 Locally Centralized Artifact Repository .. 7

3.4 Sidecar Container Security Stack (SCSS) .. 8

3.5 Service Mesh .. 11

4 Software Factory K8s Reference Design .. 12

4.1 Containerized Software Factory .. 13

4.2 Hosting Environment ... 15

4.3 Container Orchestration ... 16

5 K8s Reference Design Tools and Activities .. 17

5.1 Continuous Monitoring in K8s .. 24

5.1.1 CSP Managed Services for Continuous Monitoring 25

UNCLASSIFIED

 UNCLASSIFIED v

Figures
Figure 1: Kubernetes Reference Design Interconnects ... 6

Figure 2: Container Orchestrator and Notional Nodes .. 7

Figure 3: Sidecar Container Relationship to Application Container 8

Figure 4: Software Factory Implementation Phases .. 12

Figure 5: Containerized Software Factory Reference Design 15

Figure 6: DevSecOps Platform Options .. 16

Figure 7: Software Factory - DevSecOps Services ... 17

Figure 8: Logging and Log Analysis Process .. 24

Tables
Table 1 Sidecar Security Monitoring Components .. 10

Table 2: CI/CD Orchestrator Inputs/Outputs ... 13

Table 3: Security Activities Summary and Cross-Reference ... 18

Table 4: Develop Phase Activities ... 18

Table 5: Build Phase Tools ... 18

Table 6: Build Phase Activities .. 19

Table 7: Test Phase Tools .. 19

Table 8: Test Phase Activities ... 20

Table 9: Release and Deliver Phase Tools ... 20

Table 10: Release and Deliver Phase Activities .. 21

Table 11: Deploy Phase Tools .. 21

Table 12: Deploy Phase Activities ... 22

Table 13: Operate Phase Activities ... 22

Table 14: Monitor Phase Tools ... 23

Table 15: CSP Managed Service Monitoring Tools ... 23

UNCLASSIFIED

 UNCLASSIFIED 1

1 Introduction

1.1 Background
Modern information systems and weapons platforms are driven by software. As such, the DoD
is working to modernize its software practices to provide the agility to deliver resilient software at
the speed of relevance. DoD Enterprise DevSecOps Reference Designs are expected to
provide clear guidance on how specific collections of technologies come together to form a
secure and effective software factory.

1.2 Purpose
This DoD Enterprise DevSecOps Reference Design is specifically for Cloud Native Computing
Foundation (CNCF) Certified Kubernetes implementations. This enables a Cloud agnostic,
elastic instantiation of a DevSecOps software factory anywhere: Cloud, On Premise, Embedded
System, Edge Computing.

In this reference design the software container (“container”) is the standard unit of deployment.
The software factory defined herein produces DoD applications and application artifacts as a
product. Kubernetes must be part of the production environment.

For brevity, the use of the term ‘Kubernetes’ or ‘K8s’ throughout the remainder of this
document must be interpreted as a Kubernetes implementation that properly submitted
software conformance testing results to the CNCF for review and corresponding
certification. The CNCF lists over 90 Certified Kubernetes offerings that meet software
conformation expectations. 1

It provides a formal description of the key design components and processes to provide a
repeatable reference design that can be used to instantiate a DoD DevSecOps Software
Factory powered by Kubernetes. This reference design is aligned to the DoD Enterprise
DevSecOps Strategy, and aligns with the baseline nomenclature, tools, and activities defined in
the DevSecOps Fundamentals document and its supporting guidebooks and playbooks.

The target audiences for this document include:

• DoD Enterprise DevSecOps capability providers who build DoD Enterprise DevSecOps
hardened containers and provide a DevSecOps hardened container access service.

• DoD Enterprise DevSecOps capability providers who build DoD Enterprise DevSecOps
platforms and platform baselines and provide a DevSecOps platform service.

• DoD organization DevSecOps teams who manage (instantiate and maintain)
DevSecOps software factories and associated pipelines for its programs.

• DoD program application teams who use DevSecOps software factories to develop,
secure, and operate mission applications.

1 Cloud Native Computing Foundation, “Software conformance (Certified Kubernetes,” [ONLINE] Available:
https://www.cncf.io/certification/software-conformance/. [Accessed 8 February 2021].

https://www.cncf.io/certification/software-conformance/

UNCLASSIFIED

 UNCLASSIFIED 2

• Authorizing Officials (AOs).

This reference design aligns with these reference documents:

• DoD Digital Modernization Strategy.2

• DoD Cloud Computing Strategy.3

• DISA Cloud Computing Security Requirements Guide.4

• DISA Secure Cloud Computing Architecture (SCCA).5

• Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks
and Critical Infrastructure (Executive Order (EO) 1380).6

• National Institute of Standards and Technology (NIST) Cybersecurity Framework.7

• NIST Application Container Security Guide.8

• Kubernetes (draft) STIG – Ver 1.9

• DISA Container Hardening Process Guide, V1R1.10

1.3 DevSecOps Compatibility
This reference design asserts version compatibility with these supporting DevSecOps
documents:

• DoD Enterprise DevSecOps Strategy Guide, Version 2.1.

• DevSecOps Tools and Activities Guidebook, Version 2.1.

1.4 Scope
This reference design is product-agnostic and provides execution guidance for use by software
teams. It is applicable to developing new capabilities and to sustaining existing capabilities in
both business and weapons systems software, including business transactions, C3, embedded
systems, big data, and Artificial Intelligence (AI).

2 DoD CIO, DoD Digital Modernization Strategy, Pentagon: Department of Defense, 2019.
3 Department of Defense, "DoD Cloud Computing Strategy," December 2018.
4 DISA, “Department of Defense Cloud Computing Security Requirements Guide, v1r3,” March 6, 2017
5 DISA, "DoD Secure Cloud Computing Architecture (SCCA) Functional Requirements," January 31, 2017.
6 White House, "Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical
Infrastructure (EO 1380)," May 11, 2017.
7 National Institute of Standards and Technology, Framework for Improving Critical Infrastructure Cybersecurity,
2018.
8 NIST, "NIST Special Publication 800-190, Application Container Security Guide," September 2017.
9 DoD Cyber Exchange, “Kubernetes Draft STIG – Ver 1, Rel 0.1,” December 15, 2020.
10 DISA, “Container Hardening Process Guide, V1R1,” October 15, 2020

UNCLASSIFIED

 UNCLASSIFIED 3

This document does not address strategy, policy, or acquisition.

1.5 Document Overview
The documentation is organized as follows:

• Section 1 describes the background, purpose and scope of this document.

• Section 2 identifies the assumptions relating to this design.

• Section 3 describes the DevSecOps software factory interconnects unique to a
Kubernetes reference design.

• Section 4 describes the containerized software factory design.

• Section 5 captures the additional required and preferred tools and activities, building
upon the DevSecOps Tools and Activities Guidebook as a baseline.

1.6 What’s New in Version 2
• Refactored the document’s overall structure to align with the shift to a DevSecOps

Document Set approach.

UNCLASSIFIED

 UNCLASSIFIED 4

2 Assumptions and Principles
This reference design makes the following assumptions:

• No specific Kubernetes implementation is assumed, but the selected Kubernetes
implementation must have submitted conformance testing results for review and
certification by the CNCF.

• Vendor lock-in is avoided by mandating a Certified Kubernetes implementation;
however, product lock-in into the Kubernetes API and its overall ecosystem is openly
recognized.

It is critically important to avoid the proprietary APIs that are sometimes added
by vendors on top of the existing CNCF Kubernetes APIs. These APIs are not
portable and may create vendor lock-in!

• Adoption of hardened containers as a form of immutable infrastructure results in
standardization of common infrastructure components that achieve consistent and
predictable results.

• This reference design depends upon a number of DoD Enterprise Services, which will be
named throughout this document.

3 Software Factory Interconnects
The DevSecOps Fundamentals describes a DevSecOps platform as a multi-tenet environment
consisting of three distinct layers: Infrastructure, Platform/Software Factory, and Application(s).
Each reference design is expected to identify its unique set of tools and activities that exist
within or between the discrete layers, known as Reference Design Interconnects. Well-defined
interconnects in a reference design enable tailoring of the software factory design, while
ensuring that core capabilities of the software factory remain intact.

The value proposition of each Reference Design Interconnect block depicted in Figure 1 is
found in how each reference design explicitly defines specific tooling and explicitly stipulates
additional controls or activities within or between any given layer. These interconnects are an
acknowledgement of the need for platform architectural designs to support the primacy of
security, stability, and quality. Each Reference Design must acknowledge and/or define its
own set of unique interconnects.

UNCLASSIFIED

 UNCLASSIFIED 5

Figure 1: Kubernetes Reference Design Interconnects identifies the specific Kubernetes
interconnects that must be present in order to be compliant with this reference design. The
specific interconnects include:

• Cloud Native Access Point (CNAP) at the Infrastructure layer manages all north-south
network traffic.11

• Use of a conformant Kubernetes installation in each of the development environments.

• Clear identification of a locally centralized artifact repository to host hardened containers
from Iron Bank, the DoD Centralized Artifact Repository (DCAR) of hardened and
centrally accredited containers.

• Use of a service mesh within the K8s orchestrator to manage all east-west network
traffic.

• Mandatory adoption of the Sidecar Container Security Stack (SCSS) to implement zero
trust down to the container/function level, also providing behavior protection.

Each of these interconnects will be described fully next.

11 DoD CIO, “Department of Defense Cloud native Access Point Reference Design,” [ONLINE] Available:
https://dodcio.defense.gov/Portals/0/Documents/Library/CNAP_RefDesign_v1.0.pdf. [Accessed 19 Aug 2021].

UNCLASSIFIED

 UNCLASSIFIED 6

Figure 1: Kubernetes Reference Design Interconnects

3.1 Cloud Native Access Points
A Cloud Native Access Point (CNAP) provides a zero-trust architecture on Cloud One to provide
access to development, testing, and production enclaves at Impact Level 2 (IL-2), Impact Level
4 (IL-4), and Impact Level 5 (IL-5).12 CNAP provides access to Platform One DevSecOps
environments by using an internet-facing Cloud-native zero trust environment. CNAP’s zero
trust architecture facilitates development team collaboration from disparate organizations.

3.2 CNCF Certified Kubernetes
Kubernetes is a container orchestrator that manages the scheduling and execution of Open
Container Initiative (OCI) compliant containers across multiple nodes, depicted in Figure 2. OCI
is an open governance structure for creating open industry standards around both container
formats and runtimes.13 The container is the standard unit of deployment in this reference
design. Containers enable software production automation in this reference design, and they
also allow operations and security process orchestration.14

12 DISA, “Department of Defense Cloud Computing Security Requirements Guide, v1r3,” Mar 6, 2017
13 The Linux Foundation Projects, “Open Container Initiative,” [Online] Available at: https://opencontainers.org.
14 For more insight about the benefits of containers, visit https://cloud.google.com/containers

UNCLASSIFIED

 UNCLASSIFIED 7

Figure 2: Container Orchestrator and Notional Nodes

Kubernetes provides an API that ensures total abstraction of orchestration, compute, storage,
networking, and other core services that guarantees software can run in any environment, from
the Cloud to being embedded inside platforms like jets or satellites.

The key benefits of adopting Kubernetes include:

• Multimodal Environment: Code runs equally well in a multitude of compute
environments, benefitting from the K8s API abstraction.

• Baked-In Security: The Sidecar Container Security Stack is automatically injected into
any K8s cluster with zero trust.

• Resiliency: Self-healing of unstable or crashed containers.

• Adaptability: Containerized microservices create highly-composable ecosystems.

• Automation: Fundamental support for a GitOps model and IaC speeds process and
feedback loops.

• Scalability: Application elasticity to appropriately scale and match service demand.

The adoption of K8s and OCI compliant containers are concrete steps towards true
microservice reuse, providing the Department with a compelling ability to pursue higher orders
of code reuse across an array of programs.

3.3 Locally Centralized Artifact Repository
A Locally Centralized Artifact Repository is a local repository tied to the software factory. It
stores artifacts pulled from Iron Bank, the DoD repository of digitally signed binary container
images that have been hardened. The local artifact repository also stores locally developed
artifacts used in the DevSecOps processes. Artifacts stored here include, but are not limited to,
container images, binary executables, virtual machine (VM) images, archives, and
documentation.

The Iron Bank artifact repository provides hardened, secure technical implementation guide
(STIG) compliant, and centrally updated, scanned, and signed containers that increases the

UNCLASSIFIED

 UNCLASSIFIED 8

cyber survivability of these software artifacts. At time of writing this reference design, over 300
artifacts were in Iron Bank, with more being added continuously.

Programs may opt for a single artifact repository and rely on the use of tags to distinguish
between the different content types. It is also permissible to have separate artifact repositories
to store local artifacts and released artifacts.

3.4 Sidecar Container Security Stack (SCSS)
The cyber arena is an unforgiving hostile environment where even a minute exposure and
compromise can lead to catastrophic failures and loss of human life. Industry norms now
recognize that a modern holistic cybersecurity posture must include centralized logging and
telemetry, zero trust ingress/egress/east-west network traffic, and behavior detection at a
minimum. The sidecar container security stack provides baked-in, not bolt-on, security.

A cybersecurity stack is frequently updated as threat conditions evolve. A key benefit of a
cybersecurity K8s sidecar container design is rapidly deployed updates without any
recompilation or rebuild required of the microservice container itself. To support this approach,
the SCSS is available from the Iron Bank repository as a hardened container that K8s
automatically injects into each container group (pod). A pod is the smallest deployable units of
computing that can be managed in Kubernetes. This decoupled architecture, shown in Figure 3,
speeds deployment of an updated cyber stack without requiring any type of re-engineering by
development teams.

Figure 3: Sidecar Container Relationship to Application Container

As shown in Figure 3, the sidecar can share state with the application container. In particular,
the two containers can share disk and network resources while their running components are
fully isolated from one another.

The complete set of sidecar container security monitoring components are captured in Table 1
on the next page. Capability highlights include:

UNCLASSIFIED

 UNCLASSIFIED 9

• Centralized logging and telemetry that includes extract, transform, and load (ETL)
capabilities to normalize log data.

• Robust east/west network traffic management (whitelisting).

• Zero Trust security model.

• Role-Based Access Control.

• Continuous Monitoring.

• Signature-based continuous scanning using Common Vulnerabilities and Exposures
(CVEs).

• Runtime behavior analysis.

• Container policy enforcement.

UNCLASSIFIED

 UNCLASSIFIED 10

Table 1 Sidecar Security Monitoring Components

Tool Features Benefits Baseline
Logging agent Send logs to a logging service Standardize log collection to a central

location. This can also be used to
send notifications when there is
anomalous behavior.

REQUIRED

Logging Storage
and Retrieval
Service

Stores logs and allows searching logs Place to store logs REQUIRED

Log visualization
and analysis

Ability to visualize log data in various ways and
perform basic log analysis.

Helps to find anomalous patterns PREFERRED

Container policy
enforcement

Support for automated policy testing. The data
format for the policies must be a structured
machine-readable format, e.g. JSON or YAML.
These policies can be defined as needed.

Automated policy enforcement REQUIRED

Runtime Defense Creates runtime behavior models, including
whitelist and least privilege

Dynamic, adaptive cybersecurity REQUIRED

Service Mesh proxy Ties to the Service Mesh. Only required if the
application uses microservices.

Enables use of the service mesh. REQUIRED

Service Mesh Used for a microservices architecture, and only
required if the application uses microservices.

Better microservice management. REQUIRED

Vulnerability
Management

Provides vulnerability management Makes sure everything is properly
patched to avoid known vulnerabilities

REQUIRED

CVE Service / Host
Based Security

Provides CVEs. Used by the vulnerability
management agent in the security sidecar
container.

Makes sure the system is aware of
known vulnerabilities in components.

REQUIRED

Zero Trust model
down to the
container level

Provides strong identities per Pod with certificates,
mTLS tunneling and whitelisting of East-West
traffic down to the Pod level.

Reduces attack surface and improves
baked-in security

REQUIRED

UNCLASSIFIED

 UNCLASSIFIED 11

3.5 Service Mesh
A service mesh enhances cybersecurity by controlling how different parts of an application
interact. Some of the specific capabilities of a service mesh in K8s include monitoring east-west
network traffic, routing traffic based on a declarative network traffic model that can deny all
network traffic by default, and dynamically injecting strong certificate-based identities without
requiring access to the underlying code that built the software container. A service mesh also
typically takes over ownership of the iptables in order to inject an mTLS tunnel with FIPS
compliant cryptographic algorithms to further protect all data in motion.

Service mesh integration into the K8s cluster reduces the cyber-attack surface, and when
coupled with behavior detection, it can proactively kill any container that is drifting outside of its
expected operational norms. These capabilities restrict the ability of a bad actor to laterally
move around within the K8s cluster and fully eliminate the ability of the bad actor to achieve
escalated privileges. For these reasons, service mesh integration is a powerful component in
ensuring the cyber survivability of the software factory and the containerized applications
produced by the factory’s pipelines.

UNCLASSIFIED

 UNCLASSIFIED 12

4 Software Factory K8s Reference Design
This section will discuss the software factory design required for this reference design. It creates
a software factory using DevSecOps tools from hardened containers stored in Iron Bank.

All software factory implementations follow the DevSecOps philosophy and go through four
unique phases: Design, Instantiate, Verify, Operate & Monitor. Figure 4 illustrates the phases,
activities, and the relationships with the application lifecycle. Security is applied across all
software factory phases. The SCSS must be used for cybersecurity monitoring of the application
in this reference design.

Figure 4: Software Factory Implementation Phases

The components of this reference design’s software factory must be instantiated as follows: A
CSP-agnostic solution running a CNCF Certified K8s using hardened containers from Iron Bank.
This design recognizes that K8s is well-suited to act as the engine powering a container defined
software factory.

The software factory leverages technologies and tools to automate the CI/CD pipeline
processes defined in the DevSecOps lifecycle plan phase. There are no “one size fits all” or
hard rules about what CI/CD processes should look like and what tools must be used. Each
software team needs to embrace the DevSecOps culture and define processes that suit its
software system architectural choices. The tool chain selection is specific to the software
programming language choices, application type, tasks in each software lifecycle phase, and
the system deployment platform.

The CI/CD orchestrator automates a build pipeline workflow by validating security control gates.
DevSecOps teams create a pipeline workflow in the CI/CD orchestrator by specifying a set of
stages, stage conditions, stage entrance and exit control rules, and stage activities. If all the

UNCLASSIFIED

 UNCLASSIFIED 13

entrance rules of a stage are met, the orchestrator will transition the software artifact into that
stage and perform the defined activities by coordinating the tools via plugins and scripts. If all
the exit rules of the current stage are met, the software artifact exits the current stage and the
pipeline starts to validate the entrance rules of the next stage. Table 2 shows the features,
benefits, and inputs and outputs of the CI/CD orchestrator.

Table 2: CI/CD Orchestrator Inputs/Outputs

Features Benefits Inputs Outputs Baseline
Create
pipeline
workflow

Customizabl
e pipeline
solution

Human input
about:
• A set of

stages
• A set of

event
triggers

• Each stage
entrance and
exit control
gate

• Activities in
each stage

Pipeline workflow
configuration

REQUIRED

Orchestrate
pipeline
workflow
execution
by
coordinatin
g other
plugin tools
or scripts.

Automate the
CI/CD tasks;
Auditable
trail of
activities

Event triggers
(such as code
commit, test
results, human
input, etc.);
Artifacts from
the artifact
repository

Pipeline workflow execution
results (such as control
gate validation, stage
transition, activity
execution, etc.);
Event and activity audit
logs

4.1 Containerized Software Factory
Software factory tools include a CI/CD orchestrator, a set of development tools, and a group of
tools that operate in different DevSecOps lifecycle phases. These tools are pluggable and must
integrate into the CI/CD orchestrator. In this reference design, instantiations must rely on a
containerized software factory instantiated from a set of DevSecOps hardened
containers from Iron Bank. Iron Bank containers are preconfigured and secured to reduce the
certification and accreditation burden and are often available as a predetermined pattern or
pipeline that will need limited or no configuration.

Running a CI/CD pipeline is a complex activity. Containerization of the entire CI/CD stack
ensures there is no drift possible between different K8s cluster environments (development,
test, staging, production). It further ensures there is no drift between different K8s cluster
environments spanning multiple classification levels. Containerization also streamlines the
update/accreditation process associated with the introduction and adoption of new DevSecOps
tooling.

UNCLASSIFIED

 UNCLASSIFIED 14

Figure 5, illustrates a containerized software factory reference design. The software factory is
built on an underlying container orchestration layer powered by K8s in a host environment.
Applications typically use different sets of hardened containers from the Iron Bank than the ones
used to create the software factory.

The software factory reference design captured in Figure 5 illustrates how cybersecurity is
woven into the fabric of each factory pipeline. All of the tooling within the factory is based on
hardened containers pulled from Iron Bank.

Moving from left to right, as code is checked into a branch it triggers the CI/CD pipeline workflow
and resulting automated build, SAST, DAST, unit, and other relevant tests are executed. The
CI/CD orchestrator coordinates the different tools required to perform all the various tasks
defined by the pipeline via plugins. If the build is successful and a container image is defined,
the pipeline must also trigger a container security scan. Some tests and security tasks may
require human involvement or consent before being considered complete and passed. If all of
these relevant tests are successful, then the artifact is deployed into the test environment. If all
the entrance rules of the next stage are met, the CI/CD orchestrator will transition the software
artifact into that stage and perform the defined activities there by coordinating the tools via
plugins. When all stages are complete, a significant number of security activities have
completed and the artifact is eligible for deployment into production. Deployment into production
should be fully automated, but may be gated by a human actually pressing a button to trigger
the deployment. Once deployed, there is another control gate to decide to turn it on; this
typically requires an Authorization to Connect (ATC).

UNCLASSIFIED

 UNCLASSIFIED 15

Figure 5: Containerized Software Factory Reference Design

Operating a custom DevSecOps platform is an expensive endeavor because software factories
require the same level of continuous investment as a software application. There are financial
benefits for programs to plan a migration to a containerized software factory, reaping the
benefits of centrally managed and hardened containers that have been fully vetted. In situations
where a containerized software factory is impractical, or the factory requires extensive policy
customizations, the program should consult with DoD CIO and (if applicable) its own
DevSecOps program office to explore options and collaborate to create, sustain, and deliver
program-specific hardened containers to Iron Bank.

Platform One is the first DoD-wide approved DevSecOps Managed Service.
For more information: https://p1.dso.mil

4.2 Hosting Environment
The reference design does not constrain the software factory hosting environment, which could
be a Cloud Service Provider with a DoD provisional authorization or ATO, DoD data centers or
even on-premises servers. The hosting environment provides compute, storage, and network
resources in either physical or virtual form.

UNCLASSIFIED

 UNCLASSIFIED 16

4.3 Container Orchestration
K8s software factory responsibilities include container orchestration, interacting with the
underlying hosting environment resources (compute, storage, etc.), and coordination of clusters
of nodes at scale in development, testing and pre-production in an efficient manner. As
described in the opening paragraphs of this section, this reference design mandates a container
orchestration layer as illustrated in Figure 6.

Figure 6: DevSecOps Platform Options

It is the mission program’s responsibility (or that of a DoD software factory platform like Platform
One), to build and maintain K8s using COTS solutions from Iron Bank. K8s can be deployed on
top of a DoD authorized Cloud environment, a DoD data center, or on bare metal servers. K8s
is subject to monitoring and security control under the DoD policy in that hosting environment,
such as the DoD Cloud Computing Security Requirements Guide (SRG) and DISA’s Secure
Cloud Computing Architecture (SCCA) for the Cloud environment.

A notional set of DevSecOps services, an abbreviated representation of the DevSecOps
workflow, and various cybersecurity mechanisms are depicted in Figure 7. The diagram should
be interpreted as the basis of the software factory and not a normative reference. For example,
the complete set of tests that should be defined to assure a specific software artifact meets
mission objectives should be collaboratively defined with DOT&E.

UNCLASSIFIED

 UNCLASSIFIED 17

Figure 7: Software Factory - DevSecOps Services

5 K8s Reference Design Tools and Activities
The DevSecOps Tools and Activities Guidebook, along with the DevSecOps Fundamentals
document, establishes common DevSecOps tools and activities. The guidebook recognizes that
specific reference designs may elevate a specific tool from PREFERRED to REQUIRED, as
well as add additional tools and/or activities that specifically support the nuances of a given
reference design. The following sections identify those tools and activities unique to this
reference design across the Deploy and Monitor phases of the DevSecOps lifecycle.

UNCLASSIFIED

 UNCLASSIFIED 18

Table 3: Security Activities Summary and Cross-Reference

Activities Phase Activities Table
Reference

Tool Dependencies

Container or VM hardening Develop Table 4 Container security tool; Security compliance tool
Container policy enforcement Test Table 6 Container policy enforcement

Table 4: Develop Phase Activities

Activities Description Inputs Outputs Tool Dependencies
Container image
selection

Must leverage approved and
hardened container images
strictly from the Iron Bank
repository

N/A N/A Artifact repo

Container hardening Harden the deliverable for
production deployment.
Containers must follow the DISA
Container Hardening Guide.10

Container -Vulnerability report
and recommended
mitigation
-Hardened Container
& Build File

Container security
tool

Table 5: Build Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Container
builder

Build a container image
based on a build instruction
file. Must use a hardened
container image from Iron
Bank as the base image in
all cases.

Container image build
automation

Container base
image;
Container build file

OCI compliant
container image

REQUIRED

Artifact
Repository

Container Registry Better quality software by
using centrally managed,
hardened containers.

Artifacts Version controlled
container

REQUIRED

UNCLASSIFIED

 UNCLASSIFIED 19

Table 6: Build Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Containerize Packages all required OS
components, developed code,
runtime libraries, etc. into a
hardened container

Container base image;
Container build file

Container Image Container Builder

Store artifacts Store artifacts to the artifact
repository

Container Image Version controlled
container image

Artifact Repository

Table 7: Test Phase Tools

Tool Features Benefits Inputs Outputs Baseline
TWO
DIFFERENT
Container
security tool

Container image scan
OS check. Two are required
because scan results are too
disparate.

Ease the container
hardening process

Container
images or
running
containers

Vulnerability
report and
recommended
mitigation.

REQUIRED

Container policy
enforcement

Support for automated policy
testing. The data format for the
policies must be a structured
machine-readable format, e.g.
JSON or YAML. These policies
can be defined as needed.

Automated policy
enforcement

Policies in a
structured
machine-
readable format.

Compliance
report

REQUIRED

Security
compliance tool

Scan and report for compliance
regulations, such as DISA
Security Technical
Implementation Guides (STIGs),
NIST 800-53.

Speed up ATO
process.

Container
images.

Vulnerability
report and
recommended
mitigation.

PREFERRED

UNCLASSIFIED

 UNCLASSIFIED 20

Table 8: Test Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Container policy
enforcement

Check developed containers to be
sure they meet container policies

Container policies in a
structured machine-
readable format.

Container
compliance report

Container policy
enforcement

Table 9: Release and Deliver Phase Tools

Tool Features Benefits Inputs Outputs Baseline
IaC / CaC Automated “push button”

instantiation of the
applications running on K8s
in addition to the software
factory itself (including the
SCSS stack on top)

Eliminate drift between
environments; ensure
desired state is always
accurately captured in git.

 REQUIRED

GitOps
Kubernetes
Capability

Pull source code from git
repositories instead of
requiring the CI/CD pipeline
to push artifacts to the next
environment

Eliminates the need to open
ports and/or require keys to
be shared with CI/CD
tooling. Eliminates
environment drifts. Ensures
desired state is always
accurately captured in git.

 PREFERRED

UNCLASSIFIED

 UNCLASSIFIED 21

Table 10: Release and Deliver Phase Activities

Activities Description Inputs Outputs Tool
Dependency

Release go / no-go
decision

This is part of configuration audit;
Decision on whether to release artifacts
to the artifact repository for the
production environment.

Design documentation;
Version controlled
artifacts; Version
controlled test reports;
Security test and scan
reports

go / no-go
decision;
Artifacts are
tagged with
release tag if go
decision is made

CI/CD
Orchestrator

Table 11: Deploy Phase Tools

Tool Features Benefits Inputs Outputs Baseline
CNCF-
certified
Kubernetes

Container grouping using
pods; Health checks and
self-healing
Horizontal infrastructure
scaling
Container auto-scalability
Domain Name Service
(DNS) management
Load balancing
Rolling update or rollback;
Resource monitoring and
logging

Simplify operations by
deployment and update
automation
Scale resources and
applications in real time
Cost savings by
optimizing infrastructure
resources

Container instance
specification and
monitoring policy

Running container REQUIRED

Service
mesh

Ability to create a network of
deployed microservices with
load balancing, service-to-
service authentication, and
monitoring.

Ability to enforce Zero trust
mTLS traffic for east/west
traffic

Support for microservice
interactions.

Control plane:
service
communication
routing policies,
authentication
certificates.
Data plane: service
communication data

Control plane:
service status
reports
Data plane: routed
service
communication
data

REQUIRED

UNCLASSIFIED

 UNCLASSIFIED 22

Table 12: Deploy Phase Activities

Activities Description Inputs Outputs Tool Dependency
Deliver container to
container registry

Upload the hardened
container and
associated artifacts to
the container registry

Hardened container New container instance CNCF-certified
Kubernetes;
Artifact repository
container registry

Table 13: Operate Phase Activities

Activities Description Inputs Outputs Tool
Dependency

Scale Scale manages
containers as a group.
The number of
containers in the group
can be dynamically
changed based on the
demand and policy.

Real-time demand and
container performance
measures
Scale policy (demand or
Key Performance Indicator
(KPI)threshold; minimum,
desired, and maximum
number of containers)

Optimized resource
allocation

Container management
on the hosting
environment

Load balancing Load balancing
equalizes the resource
utilization

Load balance policy
Real time traffic load and
container performance
measures

Balanced resource
utilization

Container management
on the hosting
environment

UNCLASSIFIED

 UNCLASSIFIED 23

Table 14: Monitor Phase Tools

Tool Features Benefits Baseline
Resource, Service,
Container policy
enforcement

Support for automated policy testing. The
data format for the policies must be a
structured machine-readable format, e.g.
JSON or YAML. These policies can be
defined as needed.

Automated policy enforcement REQUIRED

Vulnerability
Management

Provides vulnerability management Makes sure everything is properly
patched to avoid known vulnerabilities

REQUIRED

CVE Service / Host
Based Security

Provides CVEs. Used by the vulnerability
management agent in the security sidecar
container.

Makes sure the system is aware of
known vulnerabilities in components.

REQUIRED

Table 15: CSP Managed Service Monitoring Tools

Tool Features Benefits Baseline
Netflow Analysis Logs network traffic within as

enclave Network troubleshooting
Helps to find anomalous patterns across
environments

REQUIRED

Centralized Logging Stores logs from the entire
environment.
Used by the SEIM/SOAR for log
analysis and incident detection

Place to store logs across environment and
Platform

REQUIRED

Centralized Analysis SEIM/SOAR for log analysis and
incident detection
Tier 3 CSSP tools

Helps to find anomalous patterns across
environment and Platform

PREFERRED

UNCLASSIFIED

 UNCLASSIFIED 24

5.1 Continuous Monitoring in K8s
Continuous monitoring of a K8s cluster must include behavior and signature-based detection in
the runtime environment. These and other container specific controls are captured in NIST
Special Publication 800-190, Application Container Security Guide. CSP services also routinely
monitor and scan CSP resources and services for misconfiguration, incorrect access control,
and security events. These CSP specific capabilities should be integrated into every continuous
monitoring strategy.

Figure 8 illustrates a notional process of monitoring, logging, and log analysis and alerting. The
process starts with application logging, compute resource monitoring, storage monitoring,
network monitoring, security monitoring, and data monitoring at the Kubernetes pod.

Each application team must determine how the application is decomposed into containers and
the specific monitoring mechanisms within those. The security tools within each will aggregate
and forward the event logs gathered from monitoring to a locally centralized aggregated logs
database on the mission program platform. The aggregated logs will be further forwarded to the
Logs/Telemetry Analysis in the Defensive Cyber Operations / Tier 2 CSSP after passing the
program application configured log filter. The program’s local log SIEM/SOAR analysis
capability will analyze the aggregated logs and generate incident alerts and reports.

Figure 8: Logging and Log Analysis Process

UNCLASSIFIED

 UNCLASSIFIED 25

Incidents will be forwarded to the relevant cybersecurity service provider(s) (CSSPs) to facilitate
change request generation for incident resolution. The mission program incident management
should alert or notify the responsible personnel about the incidents. The change request may be
created to address the incident. These actions make the DevSecOps pipeline a full closed loop
from secure operations to planning.

5.1.1 CSP Managed Services for Continuous Monitoring

The use of CSP managed services for monitoring alongside 3rd party security tools should
always be viewed through a “both/and” lens instead of an “either/or” lens. CSP managed
services can be utilized to monitor CSP resources & services, netflow, and entity behavior
analysis at a deeper level than with 3rd party tools alone. It may also be possible to employ CSP
managed services to perform log analysis (SEIM/SOAR). The monitoring ecosystem should rely
on curated IaC to instantiate the monitored environment to the maximum extent possible,
ensuring completeness and accelerating the A&A process.

dkluzik
Cleared

	DoD Enterprise DevSecOps Reference Design - CNCF Kubernetes
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 DevSecOps Compatibility
	1.4 Scope
	1.5 Document Overview
	1.6 What’s New in Version 2

	2 Assumptions and Principles
	3 Software Factory Interconnects
	3.1 Cloud Native Access Points
	3.2 CNCF Certified Kubernetes
	3.3 Locally Centralized Artifact Repository
	3.4 Sidecar Container Security Stack (SCSS)
	3.5 Service Mesh

	4 Software Factory K8s Reference Design
	4.1 Containerized Software Factory
	4.2 Hosting Environment
	4.3 Container Orchestration

	5 K8s Reference Design Tools and Activities
	5.1 Continuous Monitoring in K8s
	5.1.1 CSP Managed Services for Continuous Monitoring

	DD1910 - DoD Enterprise DevSecOps Reference Design - CNCF Kubernetes_Page_1

Accessibility Report

		Filename:

		N-120 min-DoD Enterprise DevSecOps Reference Design - CNCF Kubernetes w-DD1910_cleared_20211022.pdf

		Report created by:

		Marilyn Anderson, Section 508 Policy Compliance

		Organization:

		DOD CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 3

		Passed: 27

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

